

GX85RS128 SPI Interface Ferroelectric Randomized Memory (FRAM)

All rights reserved.

GXSC and its subsidiaries and affiliates (hereinafter referred to as GXSC) reserve the right to make changes to the contents of this manual without prior notice. Please consult with your GXSC sales representative before ordering a product. The information contained in this manual, such as functional summaries and application circuit examples, is provided to you as a reference for the use and operation

of GXSC products only; GXSC makes no warranty, express or implied, with respect to any of the information contained herein, including, but not limited to, the quality of the products, correctness, functionality, appropriateness of the operation, or infringement by the products, and shall not be liable for any damages. No warranty, express or implied, is given and no liability for any damages is assumed. GXSC shall not be liable for any damages of any kind resulting from the use of the information contained in this manual, or from the use of the information contained in this manual by you.

CONTENTS

1.	Product Description	4
2.	Product Features	4
3.	Pinout	5
4.	Pin Function Description	6
5.	Product Block Diagram	7
6.	Interface Mode	7
7.	Serial Peripheral Interface	8
8.	Operation Code	9
9.	Command List	10
10.	Holding operation	13
11.	Absolute Maximum Ratings1	.33
12.	Recommended working conditions	14
13.	Electrical Characteristics	15
14.	Timing Chart	17
15.	Power On/Off Timing	20
16.	FRAM Characteristics	20
17.	ESD and Latch-Up	21
18.	Package Size	21

1 Product Description

The FRAM chip (Ferroelectric Random Access Memory)'s configured as a 16,384 × 8-bit, non-volatile memory cell formed by the ferroelectric process and the silicon gate CMOS process technology. Unlike SRAM, the chip does not require a battery to hold data. The memory cell used in this chip can be used for 1E6 read/write ^{operations*1}. Its read/write endurance greatly exceeds that of FLASH and EEPROM, and it does not require a long time to write data like FLASH or EEPROM, and it does not require a wait time.

quantitative (science)	128Kb
Interface Type	SPI interface (mode 0 and mode 3)
operating voltage	2.7 volts to 3.6 volts
operating frequency	25 MHz
power wastage	4.2 mA (25 MHz)
low power	9 microamps (standby)
durability	¹⁰⁶ read/write (ambient), 109/read (ambient)
Data retention	10 years @ 85°C (200 years @ 25°C)
High-speed read	Supports 40MHz high-speed read commands
characteristics	
Operating temperature	-40°C to 85°C
range	
Package form	8-pin SOP package, RoHS compliant

2 Product Features

Instructions for use:

Since FRAM storage operates with a destructive readout mechanism, the minimum value of endurance is defined here as the sum of the number of reads and writes. We recommend programming within the temperature range. Extended operation beyond the temperature range will not guarantee data written within normal temperatures.

Data prior to reflow is not guaranteed and is only

supported for one reflow. See the General

Specification for Reliability Testing Techniques for

more detailed instructions on use.

3 Pinouts

4 Pin Function Description

 chip select pin This is the input pin for chip select. When CS is at the "high" level, the device is deselected (etc.). 	
This is the input pin for chip select. When CS is at the "high" level, the device is deselected (etc.).	-
	e
The SO becomes a high impedance state. At this time, the chip ignores the data input from other pins. CS is	
The device is in the select (active)state at the "low" level. CS must be "low" before an opcode can be entered.	
So Serial Data Output Pin	
VSS ground pin	
Serial Data Input Pins This is the input pin for serial data. It is used to input opcode, address and dat	a.
SCK Serial Clock Pins Clock input pin that provides clock signals for serial data input and output.	
Hold pin, interrupts the serial input/output without canceling the chip select when HOLD is low, the serial input/output is interrupted. The hold operation is activated, SO becomes high impedance, and SCK and become negligible. During the hold operation, SO becomes high impedance a SCK and SI become negligible.	SI
VDD Supply Voltage Pin	

5 Product Block Diagram

6 interface mode

The chip supports SPI mode 0 (CPOL=0, CPHA=0) and SPI mode 3 (CPOL=1, CPHA=1)

communication.

7. Serial Peripheral Interface

The chip acts as **an SPI** slave. Multiple devices can be connected by using a microcontroller equipped with an **SPI** port. Using a microcontroller that is not equipped with an Microcontrollers with **SPI** ports can be operated by emulating the **SPI** bus.

8 opcode

The chip accepts **7** types of commands specified in the opcode. The opcode is an 8-digit code, so do not enter any invalid code other than these.

Code. If CS rises while an opcode is being entered, the command will not be executed.

command name	Command Description	opcode
WREN	Write Enable Latch Command	0000 0110B
WRDI	Reset Enable Latch Command	0000 0100B
READ	read command	0000 0011B
WRITE	write an order	0000 0010B
RDID Read Device Serial Number Command		1001 1111B
FSTRD High-speed read command		0000 1011B
SLEEP	Sleep command	1011 1001B

9 command list

WREN

The WREN command is used to set the write enable latch. The **WREN** command is required to set the write enable latch before a write operation (**WRITE** command).

WRDI

The **WRDI** command is used to reset the write enable latch. No write operation is performed while the write enable latch is reset (**WRITE** command).

READ

The READ command reads the FRAM memory cell array data. Any 16-bit address and READ opcode are input to SI. 2 high address bits are invalid. Then, input SCK for 8 clock cycles and output SO synchronously on the falling edge of SCK.

Effective. When CS goes up, the **READ** command completes, but continues to read in an automatic address incremental fashion (by starting the command with

(8 cycles in units of continuous clock sending to SCK is implemented). Flips to the start address when the highest bit address is reached and holds the read cycle indefinitely.

WRITE

The WRITE command writes data to the FRAM memory cell array. The WRITE opcode, any 16-bit address, and **8** bits of write data are entered into **the SI**, with the 2-bit high address bit invalid.

When 8-bit write data is entered, the data is written to the **FRAM** memory cell array. cs up will terminate the **WRITE** command, but the **WRITE** command will be terminated if

Continuing to send 8-bit write data before each CS goes up allows you to continue writing using the auto-incrementing address. When the most significant

address when flipped to the start address, the write cycle will continue endlessly.

RDID

The RDID command reads the device serial number. After the RDIO command is sent to the chip, 32 clocks are then sent, at which point the SI is invalidated. Data is output synchronously from the SO interface starting on the falling edge of the 8th clock. Chip ID: hex 628C 2200

FSTRD

The FSTRD command reads data from the memory array continuously. After the 8-bit opcode, the 16-bit address information is input via the SI pin (the upper 2 bits of which are invalid), and then the 8-bit invalid data is input. At the same time as the 8-bit invalid data is input, an 8-bit clock is input to the SCK pin.

Input. On the falling edge of 8-bit SCK, the SO pin starts to output data. The SI pin is invalidated while the read is acquired. When the CS pin

pin is pulled up and the FSTRD command is terminated. Until the CS pin is pulled up, the data will be read continuously, the address will be incremented automatically, and the memory will be read cyclically.

data from the storage array.

SLEEP

The SLEEP command sets the chip to sleep mode. After the opcode of the SLEEP command is executed, the rising edge of CS, the chip

Enter sleep mode. However, after the opcode, before pulling the CS pin high, as long as there is one clock cycle of clock inputs

The SLEEP command will be canceled if you enter the SLEEP command.

Once switched to sleep mode, the inputs to the SCK pin and SI pin become invalid and SO is High-Z.

The chip exits sleep mode during the $_{\mbox{\tiny tREC}}$ (maximum 1 microsecond) after the falling edge of CS.

1 Holding operation

Translates the HOLD pin low to enter the hold state while SCK is low; then, while SCK is low

Returning the HOLD pin to a high level exits the hold state. Entry\exit from the hold mode is prohibited while SCK is high.

Arbitrary command operations are interrupted in the hold state, and SCK and SI inputs become ignored. SO becomes high impedance on read commands (RDSR, READ).

In addition, pulling up the CS pin during the hold state is prohibited.

11. Absolute maximum rating

narameters	notation	rat	unit (of	
parameters	notation	minimum value	maximum values	unit (Of
				measu
				re)
Power supply ^{voltage*1}	VDD	-0.5	4.0	V
Input Voltage*1	VIN	-0.5	_{VDD} + 0.5	V
Output Voltage*1	VOUT	-0.5	_{VDD} + 0.5	V
Operating Temperature	TA	-40	85	°C
Storage temperature*2	Tstg	-40	125	°C

*1: The above parameter values are based on VSS = 0 V.

*2: The above storage temperature is the ambient temperature at which the device can be stored before the data is written, after the device is written, please refer to the working ambient temperature.

<WARNING> If the load (voltage, current, temperature, etc.) applied to the semiconductor device exceeds the maximum rated value.

Permanent destruction of the device will result, so no parameter should exceed its absolute maximum rating.

12. Recommended working conditions

paramotors	notatio		unit (of		
parameters	n	minimum value	typical value	maximum values	measure)
Power supply	VDD	2.7	3.3	3.6	V
Operating ambient ^{temperature*2}	TA	-40	-	+85	°C

*1: The above parameter values are based on VSS = 0V.

*2: Applies only to the ambient temperature of this chip during operation. It can be understood that this temperature is almost the same as the temperature of the chip surface.

<WARNING> To ensure proper operation of semiconductor devices, they must

be used in the recommended operating environment or conditions.

All electrical characteristics are guaranteed when the device is operated under the recommended environment or conditions. Be sure to use the semiconductor device within the recommended operating environment or conditions. Exceeding this operating range may affect the reliability of the device and result in malfunction.

The Company makes no warranty as to the scope of use, operating conditions, or logic combinations not described in this data sheet. If the user wishes to use the device under conditions other than those listed, be sure to contact a sales representative in advance.

13. Electrical

DC Characteristics

			(0	/
parameters	notat	proroquisito	nur	merical val	ue	unit
parameters	. HOLAL	prerequisite	minimum	typical	maximum	unit (c
	ion		value	value	values	(ot
						meas
						ure)
Input Leakage	ILI	$_{VIN}$ = 0 V to $_{VDD}$	_	_	1	μA
Current						
Output	ILO	$_{VOUT} = 0 V to _{VDD}$	—	_	1	μA
Leakage						
Current						
Operating	IDD	SCK = 25MHz	_	4.2	5.5	mA
supply current		SO = open				
supply current						
Standby	ISB	sck = si = cs = udd	_	9	12	μA
Current						
		-				
	IZZ	$CS = _{VDD}$				
sleep current		All other inputs vss or	—	2.8	4	μA
		νου νου				
	2411	00	VDD *		VDD +	
Input High	VIT	_{vdd} = 2.7V to 3.6V	0.7		03	V
Voltage			0.1		0.5	
la section de la companya de la comp	VIL		0.5		VDD *	
Input Low		$_{\rm VDD}$ = 2.7V to 3.6V	-0.5		0.3	V
Voltage						
Output High	VOH	_{юн} =-2 мА	VDD-0.5		VDD	V
Voltage						
Output Low	VOL	$_{\text{IOL}} = 2 \text{ mA}$	VSS		0.4	V
Voltage						
-	RP		18	.33	80	kO
CS pull-up			10			1122
resistor						

(within recommended working conditions)

AC Characteristics

narameters	potati	numerio	cal value	upit (of
parameters	notati	minimum value	maximum values	unit (Of
	on			measur
				e)
Clock frequency (commands	fCK	0	25	MHz
other than FSTRD)				
Clock frequency (FSTRD	fCK	0	40	MHz
command)				
Clock High Time	tCH	11	-	ns
Clock Low Level Time	tCL	11	-	ns
Chip Selection Setting Time	tCSU	10	-	ns
Chip Selection Hold Time	tCSH	10	-	ns
Output Disable Time	tOD	-	12	ns
Output data validity time	tODV	-	9	ns
Output Hold Time	tOH	0	-	ns
Unselect Time	tD	40	-	ns
Rise time data	tR	-	50	ns
Data drop time	tF	-	50	ns
Data setup time	tSU	5	-	ns
Data Hold Time	tH	5	-	ns
HOLD Setting time	tHS	10	-	ns
HOLD Hold time	tHH	10	-	ns
HOLD Output float time	tHZ	-	20	ns
HOLD Output activation time	tLZ	-	20	ns
SLEEP Exit Time	tREC	-	1	μs

AC test conditions

Power supply Voltage: 2.7V to 3.6V Operating temperature range: -40°C to +85°C Input Voltage range: $v_{DD} * 0.7 \le v_{H} \le v_{DD}, 0 \le v_{L} \le v_{DD} * 0.3$ Input Rise Time :: 5 ns Input fall time :: 5 ns Input judgment : $v_{DD} * 0.5$ reference level Output judgment : $v_{DD} * 0.5$

Output load capacitance: 30pF

Pin Capacitance

naramo	notatio	proroquisito	numeric	al value	unit (of
parame	Ποτατιο	prerequisite	minimum value	maximum	unit (Oi
ters	n			values	measure)

GXSC (Shenzhen) Technology Co., Ltd

Output	со	$v_{DD} = v_{IN} = v_{OUT} = 0V.$	-	10	pF
Capacitanc		$f = 1$ MHz, $T_A = +25$ °C			
е					
Input	CI		-	10	pF
Capacitanc					
е					

14. Timing diagrams

Serial data timing

hold time (computing)

15. Power On/Off Timing

parameters	notatio	numeric	numerical value		
parameters	notatio	minimum value	maximum		
	n		values	measur	
				e)	
-	tpd	200		nc	
CS level hold time when power is		200	-	115	
off					
-	tpu	5	_	115	
CS level hold time when power is		5	_	μs	
turned on					
Power down time	tf	5	-	μs	
Power Rise Time	tr	5	_	μs	

Note: If the device does not operate within the specific conditions of the read cycle, write cycle, or

power-up/down timing, storage of data cannot be guaranteed.

16. FRAM characteristics

parameters	minimum	maximum	unit (of	note
	value	values	measure)	
	1E6	-	times/byte	Operating ambient temperature TA
Read/write				= -40°C
durability*1	1E6	-	times/byte	Operating ambient temperature TA
				= +25°C
	1E5	-	times/byte	Operating ambient temperature TA
				= +85°C
	200	-	surname	Operating ambient temperature TA
Data retention*2			Nian	= -40°C

15. Power On/Off Timing

	200	-	surname	Operating ambient temperature TA	
			Nian	= +25°C	
	10	-	surname	Operating ambient temperature TA	
			Nian	= +85°C	

*1: Since FRAM storage operates with a destructive readout mechanism, the minimum value of read/write endurance is defined here as the sum of the number of reads and writes.

*2: The number of data retention years is the data retention time after the first read/write operation after delivery from the factory. These retention times are converted values based on the converted values derived from the results of the reliability assessment.

17. ESD and latching

test (machinery etc)	numerical value
ESD HBM (Human Body Model)	≥2000 V
Conforms to JS-001	
ESD CDM (Charging Device Model)	\geq 1000 V
Conforms to JS-002	
latch	\geq 100 mA
Conforms to JESD78	

18. Package Size

Contact Us.

Contact:JESSE EMAIL:service_jesseli@gxschip.com WECHAT:f40044269 FACEBOOK:GXSC VK:@id836505054